A computational tool for comparing all linear PDE solvers - Error-optimal methods are meshless
نویسنده
چکیده
The paper provides a computational technique that allows to compare all linear methods for PDE solving that use the same input data. This is done by writing them as linear recovery formulas for solution values as linear combinations of the input data, and these formulas are continuous linear functionals on Sobolev spaces. Calculating the norm of these functionals on a fixed Sobolev space will then serve as a quality criterion that allows a fair comparison of all linear methods with the same inputs, including standard, extended or generalized finite–element methods, finite–difference– and meshless local Petrov–Galerkin techniques. The error bound is computable and yields a sharp worst–case bound in the form of a percentage of the Sobolev norm of the true solution. In this sense, the paper replaces proven error bounds by calculated error bounds. A number of illustrative examples is provided. As a byproduct, it turns out that a unique error–optimal method exists. It necessarily outperforms any other competing technique using the same data, e.g. those just mentioned, and it is necessarily meshless, if solutions are written “entirely in terms of nodes” (Belytschko et. al. 1996 [6]). On closer inspection, it turns out that it coincides with symmetric meshless collocation carried out with the kernel of the Hilbert space used for error evaluation, e.g. with the kernel of the Sobolev space used. This technique is around since at least 1998, but its optimality properties went unnoticed, so far. Examples compare the optimal method with several others listed above.
منابع مشابه
Concurrent Implementation of the Optimal Incremental Approximation Method for the Adaptive and Meshless Solution of Differential Equations
The optimal incremental function approximation method is implemented for the adaptive and meshless solution of differential equations. The basis functions and associated coefficients of a series expansion representing the solution are selected optimally at each step of the algorithm according to appropriate error minimization criteria. Thus, the solution is built incrementally. In this manner, ...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملSpecial Techniques for Kernel-Based Reconstruction of Functions from Meshless Data
Here are three short stories on meshless methods using kernel techniques: • Any well–posed linear problem in the native space NΦ of a symmetric (strictly) positive definite kernel Φ can be successfully solved by symmetric meshless collocation. This applies to a large variety of standard linear PDE problems. • Relaxing interpolation conditions by allowing some small absolute error can significan...
متن کاملTerascale Optimal PDE Simulations (TOPS), An Enabling Technology Center Scientific Discovery Through Advanced Computing: Integrated Software Infrastructure Centers
iii 1 Background and Significance 1 2 Preliminary Studies 3 2.1 PDE Time Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 PDE Nonlinear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 PDE-constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Linear Solvers . . . ...
متن کاملProbabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems
This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 41 شماره
صفحات -
تاریخ انتشار 2015